Technical implementation guide for building Agents using LangGraph patterns within the Decentralised AI ecosystem of Coral Protocol
class YourSolver:
def __init__(self):
# Domain knowledge: formulas, constants, mappings
async def solve_problem(self, problem: str) -> str:
# Main entry point - handles all incoming problems
async def _identify_problem_type(self, problem: str) -> str:
# Classification engine - routes to correct specialist
async def _solve_[type](self, problem: str) -> str:
# Specialist methods for each problem category
async def _identify_problem_type(self, problem: str) -> str:
classification_prompt = f"""
Classify this {domain} problem into: {categories}
Problem: "{problem}"
Respond with only the category name.
"""
# Call LLM API, validate response
def _identify_problem_type(self, problem: str) -> str:
problem_lower = problem.lower()
if any(word in problem_lower for word in calculus_keywords):
return "calculus"
# Continue pattern matching
async def _solve_[category](self, problem: str) -> str:
# Extract numerical data
numbers = re.findall(r'-?\d+\.?\d*', problem)
solution = f"""
**{CATEGORY} ANALYSIS**
**Problem Type:** {specific identification}
**Solution Process:**
1. **Setup:** {what we're given and what we need to find}
2. **Method:** {approach and relevant formulas}
3. **Execution:** {step-by-step calculations}
4. **Verification:** {check reasonableness}
**Key Concepts:**
- {domain-specific principle 1}
- {domain-specific principle 2}
**Applications:**
{when/where this type of problem appears}
"""
# Add numerical calculations if data present
if numbers:
# Perform domain-specific computations
return solution
async def solve_problem(self, problem: str) -> str:
try:
problem_type = await self._identify_problem_type(problem)
# Route to specialist with fallback
solver_map = {
"type_a": self._solve_type_a,
"type_b": self._solve_type_b,
}
if problem_type in solver_map:
return await solver_map[problem_type](problem)
else:
return await self._general_guidance(problem)
except Exception as e:
return self._error_response(problem, str(e))
# Clone the working example
git clone https://github.com/bivasb/Coral-Economics-Agent.git
cd Coral-Economics-Agent/agents/Coral-Economics-Agent
# Features demonstrated:
- DeepSeek LLM integration for cost-effective AI
- Problem classification and routing
- Educational step-by-step explanations
- Coral Protocol messaging integration
- Docker deployment configuration
- Comprehensive testing framework